Уравнение прямой, параллельной данной, запишем, используя формулу: y - y0 = k(x - x0), где k - угловой коэффициент, x0,y0 - координаты точки, принадлежащей графику, в данном случае точки М. Так как k = -2,5, x0 = 2, y0 = 4, получим:
у – 4 = -2,5 * (х – 2),
у - 4 = -2,5х + 5,
у = -2,5х + 9.
ответ: уравнение параллельной прямой, проходящей через точку М(2; 4), имеет вид у = -2,5х + 9
1. кат.1 = 9 По теореме Пифагора: кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2 гип.-? 9^2 + 40^2 = (Гип.)^2 81 + 1600 = (Гип.)^2 Гип. = √1681 Гип. = 41 2. 25^2 - 15^2 = kat^2 625 - 225 = kat^2 kat = √400 kat = 20 1. Треугольник равносторонний т.к. АВ = ВС = АС Высота в равностороннем треугольнике является медианой => Cторона на которую падает высота делится на 2 равных отрезка: , тогда по теореме Пифагора: CH== 23 * 3 = 69 2. Рассмотрим треугольник СНА: Т. к. угол С = 30 гр., то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС АН =1/2 АС => АН = 1/2 * 22 = 11 см
Приведем уравнение заданной прямой к общему виду:
5x + 2y + 4 = 0,
2y = -5x - 4 (делим на 2 обе части уравнения),
у = -2,5x - 2.
Уравнение прямой, параллельной данной, запишем, используя формулу: y - y0 = k(x - x0), где k - угловой коэффициент, x0,y0 - координаты точки, принадлежащей графику, в данном случае точки М. Так как k = -2,5, x0 = 2, y0 = 4, получим:
у – 4 = -2,5 * (х – 2),
у - 4 = -2,5х + 5,
у = -2,5х + 9.
ответ: уравнение параллельной прямой, проходящей через точку М(2; 4), имеет вид у = -2,5х + 9