Высота сд проведенная к основанию ав равнобедренного треугольника авс равна 5 см , а само основание 24 см . наидите радиусы вписанной в треугольник и описанной около треугольника окружности
2*R*sin(Ф) = 13 (теорема синусов); R = 16,9 (какой странный ответ, однако sin(Ф) = h/a = a/(2*R), то есть R = a^2/(2*h)... а - боковая сторона)
Радиус вписанной окружности r находится так - центр её лежит на высоте к основанию в точке пересячения с биссектрисой. r и будет тот кусочек высоты НИЖЕ этой точки. Высота делится биссектрисой в отношении 12/13 (половина основания к боковой стороне), считая от основания, поэтому r = 5*12/(13+12) = 12/5
Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы. Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
Боковая сторона 13 (5^2 + (24/2)^2 = 169 = 13^2)
Ф - угол при основании, sin(Ф) = 5/13
Радиус описанной окружности R
2*R*sin(Ф) = 13 (теорема синусов); R = 16,9 (какой странный ответ, однако sin(Ф) = h/a = a/(2*R), то есть R = a^2/(2*h)... а - боковая сторона)
Радиус вписанной окружности r находится так - центр её лежит на высоте к основанию в точке пересячения с биссектрисой. r и будет тот кусочек высоты НИЖЕ этой точки. Высота делится биссектрисой в отношении 12/13 (половина основания к боковой стороне), считая от основания, поэтому r = 5*12/(13+12) = 12/5