Высота конуса равна 9 см, угол при вершине осевого сечения равен 120°. найдите площадь сечения, проходящего через две образующие, угол между которыми равен 90° и площадь боковой поверхности конуса.
Докажем равенство тр-ков МСД и КДА. Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата. МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД. У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов. Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов. ответ: 60
Докажем равенство тр-ков МСД и КДА. Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата. МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД. У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов. Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов. ответ: 60
Рассмотрим осевое сечение конуса ΔАВС:
∠АВС = 120°, АВ = ВС как образующие, значит
∠ВАС = ∠ВСА = (180° - 120°)/2 = 30°
ΔВНС: ∠ВНС = 90°, ∠ВСН = 30°, ⇒ ВС = 2ВН = 18 см
НС = ВН·ctg30° = 9√3 см
l = BC = 18 см
r = HC = 9√3 см
Skbm = BK · BM / 2 = l²/2 = 18²/2 = 324/2 = 162 см²
Sбок = πrl = π · 9√3 · 18 = 162√2 см²
Подробнее - на -