х - ширина площадки
(х + 10) - длина площадки , по условию задачи имеем : х *(х +10) = 9000
x^2 + 10x = 9000
x^2 + 10x - 9000 =0 . Найдем дискриминант квадратного уравнения - D
D = 10^2 - 4*1*(-9000) = 100 + 36000 = 36100 . Корень квадратный из дискриминанта равен 190 . Найдем корени квадратного уравнения : 1-ый = (- 10 + 190)/2*1 =180/2 = 90 ; 2-ой = (-10 - 190)/2*1 = -200/2 = - 100 . Второй корень не подходит так как х - это ширина площадки , а она не может быть меньше 0 . Значит ширина площадки равна 90 м. Отсюда длина площадки равна : х + 10 = 90 + 10 = 100 м
Объяснение:
Найдите площади боковой и полной поверхности правильной треугольной пирамиды со стороной основания 4 см и боковым ребром 6 см.
Объяснение:
АВСМ-правильная треугольная пирамида, АВС-основание, МА=6см, АС=4 см.
1)S(полн.пр.пир.)=S(осн)+S(бок) ;
S(бок)=1/2*Р(осн)*а, а-апофема,
S(осн)=S(прав. треуг)=(а²√3)/4.
2) S(осн)=(4²√3)/4= 4√3 (см²) ;
3)Пусть ВК⊥АС, тогда ВК-медиана ,т.к треугольник правильный ⇒
АК=2 см.
Т.к. ВК⊥АС, то МК⊥АС по т. о трех перпендикулярах (МО-высота прирамиды). Тогда ΔАМК-прямоугольный, по т. Пифагора
МК=√(АМ²-АК²) , МК=√(36-4)=√32=4√2 (см).
4) Р( осн.)=4*3=12(см) ,
S(бок)=1/2*12*4√2=24√2 (см²)
5)S(полн.пр.пир.)=4√3+24√2 (см²)