Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м
Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).
8.2.
Построим точки A1 и B1 на сторонах BC и AC соответственно так, что BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 : 2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.
8.3.
Пусть O — центр данной окружности, AB — хорда, проходящая через точку P, M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.
8.4.
Пусть R — радиус данной окружности, O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.
8.5.
Пусть R — радиус окружности S, O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса
Ц
R2 – d2/4
с центром O.
8.6.
Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,
SR
EC
= PQ
EC
= BQ
BC
= FR
FC
, т. е. точка S