Объяснение:
А1 1)8
d=2r=2*4=8
A2 3)3π
C=2πr=2π*1,5=3π
A3 3)75°
<вписанного=1/2 <центральный 150°:2=75°
A4 1)28 см
AB+CD=AD+BC
P=2(AB+CD)=2*14=28 см
A52)180°
В1
В окружность вписан квадрат со стороной;
Сторона квадрата а = 8 см;
Найдем длину дуги окружности, стягиваемой стороной квадрата.
1) Длина дуги находиться по формуле:
L = π * R * a/180°;
R = d/2;
d = диагональ квадрата.
2) Найдем диагональ квадрата по теореме Пифагора, если катеты равны стороне квадрата, то есть 8 см.
d = √(8^2 + 8^2) = √(64 + 64) = √(2 * 64) = 8√2 см;
С=πd= 8√2 π см
B2 1),2)3
B3
.Радиус ОА окружности является серединным перпендикуляром хорды СД,также с касательной ,проведенная через точку А,в точке касания образует прямой угол.Поэтому касательная ,проведенная через точку А, параллельна хорде СД.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°