Сделаем построение по условию.
Пусть боковая сторона АС=а
На основании данных (Площадь треугольника АВС равна 9√2, угол А = 45 градусов. )
Площадь по формуле S=1/2*a^2*sinA
Получаем квадрат боковой стороны АС^2=а^2= 2S/sinA
Пусть прямая, проходящая через точку О и середину АС пересекает АС в точке К АК=КС , тогда ОК – серединный перпендикуляр , проведенный к хорде АС
Рассмотрим треугольник АМК . Углы АКМ=90 КАМ=45 АМК=45(180-90-45)
Т.е. треугольник АМК . прямоугольный, равнобедренный
Тогда АК=МК = 1/2АС МК –высота в треугольнике АМС
Площадь треугольника S(АМС)=1/2*МК*АС=1/2*(1/2АС)*АС=1/4*АС^2=1/4*a^2=1/4*2S/sinA =
=1/4*2*9√2/sin45=1/4*2*9√2/(√2/2) = 9
Тогда площадь треугольника S(ВМС)=S(ABC)-S(AMC)= 9√2-9=9(1-√2)
***возможна другая форма ответа
1)Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости это значит, что ВС перпендикулярна (AMB) , но прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости. значит Докажите,что ВС перпендикулярно АМ.
2)опустим в треугольнике АМВ перпендикуляр МТ из точки М ,(Т лежит на АВ)
так как АМ=ВМ МТ- медиана и АТ=ВТ=2 см,
полупериметр АМВ=(2*2корень(6)+4)/2=2(корень(6)+1)
по формуле Герона площадь треугольника АМВ равна: Корень(2(корень(6)+1)*2*2*2(корень(6)-1)=4корень(5)
но лощадь треугольника АМВ равна:0,5*АВ*МТ=2МТ, а значит МТ=2корень(6)
рассмотрим треугольник ВТС - прямоугольный, по теореме Пифагора: СТ=корень(16+4)=2корень(5)
МТ перпендикулярна плоскости квадрата, а значит и перпендикулярна СТ, значит треугольник МСТ-прямоугольный, по тереме Пифагора: МС=корень(20+20)=2корень(10)
а) В между А и С
Объяснение:
а) если АС-СВ=АВ, тогда АС=СВ+АВ