Большее основание трапеции в два раза больше меньшего основания. через точку пересечения диагоналей проведена прямая, которая параллельна основаниям трапеции. вычисли высоту полученных трапеций, если высота данной трапеции равна 21 см.
Пусть основание равно 6х, тогда боковая сторона равна 5х. Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая. Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5. Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75. С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
1) Пусть будет треугольник АВС, АВ=7, АС=13, угол В = 60 градусов. По теореме синусов
Угол С=27 градусов 47 минут. По теореме о сумме углов треугольника находим, что угол А равен 92 градуса 13 минут.
Синусы можно найти в таблице Брадиса. ответ: ВС=15.
2) Диагонали прямоугольника равны, они делятся точкой пересечения пополам. Угол в 60 градусов - острый, поэтому он смотрит в сторону меньшей стороны. Значит, у нас есть равнобедренный треугольник с основанием 5 и углом в 60 градусов, то есть он равносторонний и его сторона равна 5. Тогда диагональ прямоугольника равна 5*2=10. Всё просто) ответ: 10.
Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая.
Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5.
Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75.
С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
ответ: 7,8125