1)сумма углов = 360 (угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180 по условию усли (угол 1)=х, то (угол 2)=3*х. Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b). По условию если сторона1=х, то сторона2=х+4. следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150. проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы. Следовательно сторона BC=8*2=16 и сторона AD=16. Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.
Треугольники AOD и BOC подобны по свойству трапеции. Площади подобных треугольников относятся, как квадраты коэффициента их подобия 25:16=k² k=√(25:16)=5:4 Следовательно, основания трапеции относятся, как 5:4 Обозначим высоту ᐃ ВОС=h₁ высоту ᐃ АОD=h₂ S АОD=h₂·АD:2 S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н S ABCD=Н·(АD+ВС):2 Н=h₂+h₁ S ABCD =(h₁+h₂)·(АD+ВС):2= =h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1) Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних. h₂:h₁=5:4 4h₂=5h₁ h₂=5h₁/4 S AOD=h₂·АD:2=5h₁/4·АD:2 25=5h₁/4·АD:2 Умножим на два обе части уравнения 12,5=5h₁/4·АD 5h₁/4 =12,5:AD h₁:4=2,5:AD h₁·AD= 4·2,5 =10 см² Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см² Проверим это: 2) h₂:h₁=5:4 5h₁=4h₂ h₁=4h₂/5 S ВОС=h₁·ВС:2=4h₂/5·ВС:2 16=4h₂/5·ВС:2 Умножим на два обе части уравнения 8=4h₂/5·ВС 4h₂:5=8:ВС 4h₂·ВС=8·5=40 h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС = S ABCD=10+25+16+10= 61 см
1)сумма углов = 360
(угол 1 + угол 2) = (угол 3 + угол 4)=360/2=180
по условию усли (угол 1)=х, то (угол 2)=3*х.
Следовательно: х+3*х=180; х=4 - углы 1 и 3; 3*45=135 - углы 2 и 4.
2)Периметр=2*(a+b).
По условию если сторона1=х, то сторона2=х+4.
следовательно: 2*(х+х+4)=36; 2х=18; х=7 - сторона1 и сторона3; 7+4=11 - сторона2 и сторона4.
3)Т.к. в параллелограмме угол1=30, то противоположный ему угол3=30. а угол2=угол4=(360-2*30)/2=150.
проведем из угла б перпендикуляр BH к СD, угол CBD=180-30-90=60. Напротив угла в 30 градусов лежит катет равный половине гипотенузы.
Следовательно сторона BC=8*2=16 и сторона AD=16.
Т.к. Периметр=2*(a+b)=52, то a+b=26. Следовательно стороны AB=СD=26-16=10.