Відповідь:
Пояснення:
Необходимо проверить чтоби сумма двух любих отрезков била большей за третий отрезок, иначе △ не прстроить.
Построение:
А) На прямой откладиваем отрезок АВ( или любой другой)
С циркуля отмеряем длину АС и с точки А рисуем окружность с етим радиусом.
С точки В рисуем окружность с радиусом ВС.
Точкой пересечения етих окружностей будет вершина С
Б) проведем перпендикуляр к ВС
З вершини В и С проводим окружности, с радиусом прилегающих сторон ВА и СА соответственно. Соединив точки пересечения етих окружностей имеем перпендикуляр- висоту к ВС.
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²