формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.Круг — часть плоскости, лежащая внутри окружности.
R - радиус круга
D = 2R - диаметр круга
Р = 2πR - периметр круга (длина окружности)
S = π R² - площадь круга
выведем формулу для площади S круга.
Пусть у нас есть правильный n -угольник, со стороной а, в который вписана окружность радиуса r и вокруг которого описана окружность радиуса R.
n-угольник разбит на n треугольников площадью S₁ = 0.5 а · r
Площадь n-угольника равна
Sn = n · 0.5 a · r = 0,5 Р · r (здесь Р - периметр многоугольника)
При n → ∞ получаем r → R, P → C = 2πR и Sn → S
S = 0.5 · 2πR · R
S = πR² - площадь круга
Объяснение:
Если в трапецию вписана окружность, то суммы противоположных сторон равны. Значит, сумма оснований трапеции = 8+8=16 см, а полусумма (a+b/2) = 16/2=8 см. Высоту и основания связывает площадь:
S = a+b/2 * h
h=S/a+b/2
h=48/8
h=6 (см)
Радиус вписанной окружности в 2 раза меньше высоты, т.е. r=1/2h=3 (см)
ответ: 3 см.