М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kuzhbapolina20
kuzhbapolina20
30.08.2021 04:51 •  Информатика

С кнопки 9 в презентацию можно вставить

таблицу
диаграмму для представления и сравнения данных
рисунок из коллекции автора презентации
информацию об авторе на каждом слайде
организационную диаграмму
текущие дату и время
автофигуры
предварительно отформатированную надпись
художественный текст
музыку или записать звук
рисунок из коллекции Майкрософт

👇
Ответ:
5655к
5655к
30.08.2021

Кнопка 9 отвечает за колонтитул, значит, можно вставить информацию об авторе на каждом слайде.

Объяснение:

4,6(55 оценок)
Открыть все ответы
Ответ:
Vceohenploxo
Vceohenploxo
30.08.2021
При изменении стиля ссылок в формуле =A5^2, мы можем использовать абсолютные ссылки или относительные ссылки для адресации ячеек.

1. Абсолютные ссылки:
При использовании абсолютных ссылок, формула будет выглядеть так: =$A$5^2. В этом случае, символ $ перед числом и буквой блокирует адрес ячейки от изменений при копировании или перемещении формулы. То есть, ячейка $A$5 будет оставаться неизменной. Если мы скопируем или переместим формулу, везде будет использоваться именно эта ячейка.

2. Относительные ссылки:
При использовании относительных ссылок, формула будет выглядеть так: =A5^2. В этом случае, адрес ячейки не содержит символа $ и будет изменяться относительно нового расположения формулы. Если мы скопируем или переместим формулу, то адрес ячейки также будет меняться.

Оба варианта могут быть полезны в зависимости от задачи. Если нам требуется, чтобы при копировании или перемещении формулы всегда использовалась одна и та же ячейка, мы используем абсолютные ссылки. Если нам нужно, чтобы формула адаптировалась к новому расположению, мы используем относительные ссылки.
4,8(68 оценок)
Ответ:
game108551
game108551
30.08.2021
Для решения данной задачи, мы должны проанализировать каждое утверждение каждого школьника и выяснить, откуда приехал каждый из них. Посмотрим на каждое утверждение по очереди:

1. Иванов говорит, что он приехал из Клянцов, а Дмитриев - из Новозыбкова. Здесь Иванов говорит правду, так как он не может приехать из Дятькова, поскольку Дмитриев утверждает, что он приехал из Новозыбкова. Значит, Иванов и Дмитриев приехали из Клянцов и Новозыбкова соответственно.

2. Сидоров говорит, что он приехал из Клянцов, а Петров - из Трубчевска. Здесь Сидоров тоже говорит правду, так как он не может приехать из Трубчевска, так как Петров утверждает, что он приехал из Клянцов. Значит, Сидоров и Петров приехали из Клянцов и Трубчевска соответственно.

3. Петров говорит, что он приехал из Клянцов, а Дмитриев - из Дятькова. Здесь Петров лжет, так как он утверждает, что Дмитриев приехал из Дятькова, но на самом деле Дмитриев приехал из Новозыбкова. Значит, Петров приехал из Трубчевска.

4. Дмитриев говорит, что он приехал из Новозыбкова, а Ефимов - из Жуковки. Здесь Дмитриев говорит правду, так как он не может приехать из Жуковки, так как Ефимов утверждает, что он приехал из Жуковки. Значит, Дмитриев и Ефимов приехали из Новозыбкова и Жуковки соответственно.

5. Ефимов говорит, что он приехал из Жуковки, а Иванов - из Дятькова. Здесь Ефимов лжет, так как такого города, как Дятьков, не существует. Значит, Ефимов приехал из Жуковки.

Итак, мы выяснили, откуда приехал каждый школьник:
- Иванов приехал из Клянцов
- Сидоров приехал из Клянцов
- Петров приехал из Трубчевска
- Дмитриев приехал из Новозыбкова
- Ефимов приехал из Жуковки

Таким образом, каждый школьник приехал из своего указанного города, и все утверждения расходятся с истиной, кроме утверждения Петрова.
4,7(21 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ