Просто 1, т.к А ∨ неА = 1 (тут за А можно взять всё х·у), а 1 ∨ неважночто = 1 можно конечно расписать все скобки по другим правилам, но ответ тот же будет
Тексты вводятся в память компьютера с клавиатуры. На клавишах написаны привычные нам буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в двоичном коде. Это значит, что каждый символ представляется 8-разрядным двоичным кодом.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.
Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.
Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.
Понятно, что это дело условное, можно придумать множество кодировки.
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.
Зная количество бит в двоичной записи числа, можно посчитать количество бит в восьмеричной записи, так как из двоичной в восьмеричную систему счисления число можно привести группировкой по трем соседним разрядам, начиная с младших. Например, есть число 1100111. Сгруппируем его разряды: (1)(100)(111)=147 - в восьмеричной СС. Пусть количество разрядов 2-ичного числа равно n. Тогда количество разрядов восьмеричного числа будет n/3, деленное нацело и округленное вверх. n=7 => n/3=7/3. Округляем, будет 3. a) 10111010. n=8 => 8/3 - 3 8-ричных разряда б) 1001111000111, n=13 => 13/3 - 5 8-ричных разрядов в) A18C. Сначала найдем n. Посмотрим, сколько значащих разрядов у старшей цифры. A=1010 - 4 разряда. У остальных цифр по 4 разряда всегда. Поэтому n=3*4+4=16 => 16/3 - 6 8-ричных разрядов. г) 1375BE. 1=1 : 1 разряд => n=5*4+1=21 => 21/3 - 7 8-ричных разрядов
можно конечно расписать все скобки по другим правилам, но ответ тот же будет