М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Hope4736457456
Hope4736457456
01.07.2020 21:38 •  Математика

Интеграл(замена переменной) dx\e^3x

👇
Ответ:
astrafikal
astrafikal
01.07.2020

-  1 / 3 e^-3x + c

4,4(85 оценок)
Открыть все ответы
Ответ:
nargiz19821129
nargiz19821129
01.07.2020

Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.

Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.

Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.

Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.

ответ: От 1 до 5.

(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)

4,8(72 оценок)
Ответ:
LollyPopsi
LollyPopsi
01.07.2020

404 числа.

Пошаговое объяснение:

Все числа от 1 до 2021 разобьём на десятки: два неполных, в первый из которых входят числа от 1 до 9, а во второй – числа от 2000 до 2021, и 199 полных десятков - от 10 до 19, от 20 до 29, ..., от 1990 до 1999. В неполных десятках имеется лишь одно число с суммой цифр, кратной 5 (непосредственно проверяется).

В полном десятке сумма цифр каждого следующего числа по модулю 5 получается из суммы цифр предыдущего прибавлением единицы. Значит, в каждом таком десятке есть ровно два числа с суммой цифр, кратной 5.

Следовательно, интересующих нас чисел 6 + 2·199 = 404.

4,4(72 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ