![\displaystyle\lim_{n\to\infty}\frac{\sqrt[3]{n^3+7}+\sqrt[3]{n^2+1}}{\sqrt[4]{n^3+5}+\sqrt{n^2+1}}=\frac{\infty}{\infty}=\lim_{n\to\infty}\frac{n(\sqrt[3]{1+\frac{7}{n^3}_{\to0}}+\sqrt[3]{\frac{1}{n}_{\to0}+\frac{1}{n^3}_{\to0}})}{n(\sqrt[4]{\frac{1}{n}_{\to0}+\frac{5}{n^4}_{\to0}}+\sqrt{1+\frac{1}{n^2}_{\to0}})}=\\=1](/tpl/images/1019/9257/5498d.png)
Первый для младших школьников).
Из трёх мальчиков надо взять двоих. Сколько существует
Что бы было легче понять, пронумеруем мальчиков: 1-ый, 2-ой, 3-ий.
По два мальчика есть всего три варианта: 1 и 2; 1 и 3; 2 и 3.
Но к ним добавить девочку можно пятью То есть, возьмём первую пару мальчиков и к ним добавим первую девочку, а можно вторую, третью, четвёртую или пятую. Получется, на каждую пару мальчиков пять вариантов девочек.
Итого: 3∙5=15.
Второй с применением формул комбинаторики), решение смотри на фотографии, не установлен у меня LaTeX, не знаю, как набрать по другому формулы.
Мальчики - число сочетаний из 3 по 2.
Девочки - число сочетаний из 5 по 1.
Так как надо, чтобы одновременно выполнялись два условия (про мальчиков и девочек), то применим закон умножения и сочетания перемножим.
Первый для младших школьников).
Из трёх мальчиков надо взять двоих. Сколько существует
Что бы было легче понять, пронумеруем мальчиков: 1-ый, 2-ой, 3-ий.
По два мальчика есть всего три варианта: 1 и 2; 1 и 3; 2 и 3.
Но к ним добавить девочку можно пятью То есть, возьмём первую пару мальчиков и к ним добавим первую девочку, а можно вторую, третью, четвёртую или пятую. Получется, на каждую пару мальчиков пять вариантов девочек.
Итого: 3∙5=15.
Второй с применением формул комбинаторики), решение смотри на фотографии, не установлен у меня LaTeX, не знаю, как набрать по другому формулы.
Мальчики - число сочетаний из 3 по 2.
Девочки - число сочетаний из 5 по 1.
Так как надо, чтобы одновременно выполнялись два условия (про мальчиков и девочек), то применим закон умножения и сочетания перемножим.