ответ:
обоснование числовой лотереи рассчитывается с применением теории вероятностей и теории чисел. рассчитав вероятное число выигрышей каждого класса, можно узнать, какой процент от общей суммы доходов должен пойти на выигрыши каждого класса и какова должна быть сумма каждого выигрыша.
общее количество комбинаций в числовой лотерее рассчитывается при формулы: “а номеров из n” = (n)
(a) = n x (n - 1) x (n - 2) x (n - 3) … x [n - (a -1)]
1 x 2 x 3 x 4 x a
в числовой лотерее “6 из 49” общее количество комбинаций составляет: “6 из 49” = (49)
(6) = 49 x 48 x 47 x 46 x 45 x 44
1 x 2 x 3 x 4 x 5 x 6 = 13 983 816 комбинаций
вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:
выигрыши 1 класса (за 6 угаданных номеров) :
(6)
(6) х (43)
( 0 ) = 6 х 5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5 х 6 = 1 выигрыш
выигрыши 2 класса (за 5 угаданных номеров) :
(6)
(5) х (43)
( 1 ) = 6 х 5 х 4 х 3 х 2
1 х 2 х 3 х 4 х 5 x 43
1 = 258 выигрышей
выигрыши 3 класса (за 4 угаданных номера) :
(6)
(4) х (43)
( 2 ) = 6 х 5 х 4 х 3
1 х 2 х 3 х 4 x 43 х 42
1 х 2 = 27 090 выигрышей
всего в лотерее “6 из 49”, таким образом, содержится 27 349 выигрышей, т. е. 1 выигрыш приходится на 511 комбинаций.
вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:
выигрыш 1 класса (за 6 угаданных номеров) :
= 13 983 816
1 = 1 на 13 983 816 комбинаций
выигрыш 2 класса (за 5 угаданных номеров) :
= 13 983 816
258 = 1 на 54 200 комбинаций
выигрыш 3 класса (за 4 угаданных номера) :
= 13 983 816
27 090 = 1 на 516 комбинаций
пошаговое объяснение:
Пошаговое объяснение:
Пусть а, b- катеты 1 треугольника
d,f- катеты 2 треугольника. S1 - площадь 1 треугольника, S2 -площадь 2 треугольника.
По условию: а=f-4, b=d+8, S1=S2+34;
По теореме Пифагора: a^2+b^2=c^2. По условию, гипотенузы обоих треугольников одинаковы, следовательно:
a^2+b^2=f^2+d^2;
Получаем систему уравнений:
1)a=f-4;
2)b=d+8;
3)a*b/2=34+f*d/2;=>a*b=68+f*d;
4)a^2+b^2=f^2+d^2.
Подставляем значения a и b в 3 ур-ние:
f*d-4*d+8*f-32= 68+f*d => -4*d+8*f=100;=> d=2*f-25.
Получившееся значение d подставляем в 4 ур-ние (перед этим подставляем a и b и упрощаем):
(f-4)^2 +(d+8)^2 = f^2+d^2;
f^2-8*f+16+d^2+16d+64= f^2+d^2;
16*d-8*f+80=0;
16(2*f-25)-8*f+80=0;=> 32*f-400+80-8*f=0;
16*f=320;
f=20; a=20-4=16;
d=2*20-25=15; b=23.
Вроде все.