1) Пусть одна сторона прямоугольника х , а вторая у . По условию задачи известно что х-у=4. Площадь прямоугольника будет ху, что по условию задачи 45. Составим и решим систему уравнений: x-y=4 xy=45
Прямоугольным называется треугольник, у которого один угол прямой (равен 90 градусов). Грубо говоря, рисовать его надо так: рисуй прямоугольник, дели его по диагонали пополам и стирай любую из двух половинок. У тупоугольного один угол будет больше 90 градусов (больше, чем самый большой угол у прямоугольного). То есть, тебе нужно нарисовать треугольник с углом, ещё большим, чем у предыдущего (прямоугольного) треугольника. У остроугольного все углы будут меньше 90 градусов (меньше, чем самый большой угол у прямоугольного).
Пошаговое объяснение:
1. 1) 3ln |x| + C
2) ln |x+1| + C
2. 1) (x^4/4 + 2x^2 + x) | (1;2) = 2^4/4 + 2*2^2 + 2 - (1^4/4 + 2*1^2 + 1) = 4 + 8 + 2 - 1/4 - 2 - 1 = 10 3/4
2) e^x | (1;-1) = e^1 - e^(-1) = e - 1/e
3) sin x | (Π/2; Π/6) = sin Π/2 - sin Π/6 = 1 - 1/2 = 1/2
3. 1) Сначала находим пределы интегрирования
-x^2 + x + 6 = 0
-(x-3)(x+2) = 0
Пределы (-2; 3). Интеграл равен
-x^3/3 + x^2/2 + 6x | (-2;3) = -3^3/3 + 3^2/2 + 6*3 - (-(-2)^3/3 + (-2)^2/2 + 6(-2)) =
= -9 + 9/2 + 18 - 8/3 - 2 + 12 = 19 + 11/6 = 20 5/6