Уравнение (ax - 5 - x)/(x^2 - 4) = 0 равносильно системе: ax - 5 - x = 0, x^2 - 4 ≠ 0. Из первой части системы: x(a-1)=5, x = 5/(a-1). Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет. Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2: 1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5 2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5 ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.
Наибольшая диагональ D правильной шестиугольной призмы - это гипотенуза прямоугольного треугольника, где катеты - боковое ребро, равное высоте призмы H, и диагональ d основы (это шестиугольник), равная двум сторонам основы (или двум радиусам описанной окружности). H = D*sin 60° = 12*(√3/2) = 6√3 см. d = D*cos 60° = 12*0,5 = 6 см. Сторона основы призмы равна половине d: a = d/2 = 6/2 = 3 см. Площадь основы (шестиугольника) равна: So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см². Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
ax - 5 - x = 0,
x^2 - 4 ≠ 0.
Из первой части системы: x(a-1)=5, x = 5/(a-1).
Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет.
Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2:
1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5
2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5
ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.