MABCD - пирамида, MB⊥(ABC), AB = 9.∠MAB = 30°, ∠MCB = 60°.Найти Sбок. и V пир. Решение. 1) Чтобы найти боковую поверхность пирамиды, придётся искать площади боковых граней и потом их складывать. 2) Чтобы вычислить объём пирамиды, нужна формула V = 1/3*Sосн.* H 1)ΔAMB. MB = x, AM = 2x, AB = 9. По т. Пифагора: 3х² =81, х² = 27,х =3√3 ΔСМВ. СВ = уБ СМ = 2у, МВ = х = 3√3. По т. Пифагора: 3у² = 27, у²=9, у = 3 SΔABM = 1/2*AB*MB = 1/2 * 9*3√3 = 27√3/2 SΔAMD = 1/2*AD*AM = 1/2*3√13*6√3 = 9√39 SΔMCD = 1/2*CD*CM = 1/2*9*6 = 27 SΔMCB = 1/2*3*3√3 = 9√3/2 Sбок. = 27√3/2 + 9√39 + 27 + 9√3/2= 18√3 + 9√39 +27 2) V = 1/3* 9*3*3√3=27√3
Пусть s - расстояние между городами. Пусть v - скорость автомобиля. s=3v - первое уравнение.
v+15 - увеличенная скорость автомобиля. s = (v+15) • 2,4 - второе уравнение.
Поскольку левые части обоих уравнений равны, то равны и правые части: 3v = (v+15)•2,4 3v = 2,4v + 36 3v-2,4v = 36 0,6v = 36 v = 36:0,6 v = 60 км/ч - скорость автомобиля.
Подставим это значение в первое уравнение: s = 3v s = 3•60 s = 180 км - расстояние между городами. ответ: 60 км/ч; 180 км
Проверка: 1) 60 + 15 = 75 км/ч - увеличенная скорость автомобиля. 2) 180 : 75 = 2,4 часа потребовалось бы автомобилю на преодоление расстояния между городами, если бы его скорость была бы на 15 км/ч больше.
Решение.
1) Чтобы найти боковую поверхность пирамиды, придётся искать площади боковых граней и потом их складывать.
2) Чтобы вычислить объём пирамиды, нужна формула V = 1/3*Sосн.* H
1)ΔAMB. MB = x, AM = 2x, AB = 9. По т. Пифагора: 3х² =81, х² = 27,х =3√3
ΔСМВ. СВ = уБ СМ = 2у, МВ = х = 3√3. По т. Пифагора: 3у² = 27,
у²=9, у = 3
SΔABM = 1/2*AB*MB = 1/2 * 9*3√3 = 27√3/2
SΔAMD = 1/2*AD*AM = 1/2*3√13*6√3 = 9√39
SΔMCD = 1/2*CD*CM = 1/2*9*6 = 27
SΔMCB = 1/2*3*3√3 = 9√3/2
Sбок. = 27√3/2 + 9√39 + 27 + 9√3/2= 18√3 + 9√39 +27
2) V = 1/3* 9*3*3√3=27√3