Посчитаем, сколько всего равновероятных взятия двух горшков. Для этого пронумеруем горшки от 1 до 5. Сколькими можно взять два из них? По законам комбинаторики, 10. Вот они:
1. 1 и 2
2. 1 и 3
3. 1 и 4
4. 1 и 5
5. 2 и 3
6. 2 и 4
7. 2 и 5
8. 3 и 4
9. 3 и 5
10. 4 и 5
Итак мы выяснили, что всего возможны десять случаев взятия горшков. Среди них только в одном случае Винни Пух останется голодным - если он возьмёт два пустых горшка. В остальных девяти из десяти случаев Винни не останется голодным.
Значит вероятность 9/10
ответ:1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ Пошаговое объяснение:
1. Рассмотрим △OAR: ∠OAR = 90° (так как OA — высота), ∠AOR = 15° (по условию).
По теореме о сумме углов треугольника: сумма всех внутренних углов любого треугольника равна 180°. Тогда, для △OAR:
∠OAR + ∠ARO + ∠AOR = 180°;
90° + ∠ARO + 15° = 180°;
∠ARO = 180° - 90° - 15°;
∠ARO = 75°.
2. В прямоугольнике MRKH пары сторон MR и KN, MN и RK параллельны (по определению прямоугольника)
∠ARO = ∠ONK так как они являются накрест лежащими углами, образованными при пересечении параллельных прямых MR и KN секущей RN.
Таким образом, ∠ONK = 75°.
ответ