2f(x), а, значит, и функция f(x).
Пошаговое объяснение:
Мы воспользуемся следующими свойствами непрерывных функций:
(1) сумма и разность непрерывных функций — непрерывные функции;
(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.
Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).
Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).
Пошаговое объяснение:
Мы воспользуемся следующими свойствами непрерывных функций:
(1) сумма и разность непрерывных функций — непрерывные функции;
(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.
Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).
Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).
ответ: 15 - первое число; 3 - второе число; 6 - третье число.
Пошаговое объяснение:
Пусть x - третье число
1) Составим и решим уравнение:
(2.5x+0.5x+x) : 3=8
4x : 3=8
1
x=8 | :1
x=6
6 - третье число
2) 2.5 * 6=15 - первое число
3) 0.5 * 6=3 - второе число