Уравнение (ax - 5 - x)/(x^2 - 4) = 0 равносильно системе: ax - 5 - x = 0, x^2 - 4 ≠ 0. Из первой части системы: x(a-1)=5, x = 5/(a-1). Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет. Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2: 1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5 2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5 ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.
Из всех шаров изготовили ОДИНАКОВЫЕ гирлянды и в каждой гирлянде ОДИНАКОВОЕ кол-во всех цветов,значит кол-во гирлянд тоже будет ОДИНАКОВЫМ.Теперь ищем одинаковую цифру которая будет делиться на каждый цвет шаров.Это будет цифра 6. 1)24:6=4 красных шара 2)42:6=7 синих шаров 3)30:6=5 желтых шаров 4)4+7+5=16 шаров в каждой гирлянде. ответ: 6 гирлянд по 16 шаров = 96 шаров всего(24+42+30).
ax - 5 - x = 0,
x^2 - 4 ≠ 0.
Из первой части системы: x(a-1)=5, x = 5/(a-1).
Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет.
Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2:
1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5
2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5
ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.