Самое простое решение - наглядное. Взять доску, положить на нее карту района, и пробить в ней 3 дырки в этих деревнях (чтобы масштаб правильный получился). Потом взять три гирьки весом 100, 200 и 300 граммов, связать их веревками и опустить в эти три дырки. Где окажется общий узел, которым веревки связаны - там и строить школу. Логика подсказывает, что узел окажется ближе к той деревне, где гирька тяжелее, то есть где живет 300 детей. Расстояния должны быть обратно пропорциональны количеству детей. Если расстояние от школы S до деревни |SA| = x, |SB| = y, |SC| = z, то 100x = 200y = 300z x = 2y = 3z Графически - нужно найти такую точку S в треугольнике, чтобы расстояние от нее до С было какое-то, до В - в 2 раза больше, до А - в 3 раза больше.
Основные формулы для решения задачи: V по теч. = Vc + V теч. - скорость по течению реки V против теч. = Vc - V теч. - скорость против течения t по теч.= S/V по теч. - время на путь по течению реки t против теч. = S/V против теч. - время на путь против течения реки
По условию: Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) . Путь в одну сторону S = 285 км Время на путь туда-обратно t = 36 - 19 = 17 часов.
Пусть скорость течения Vc = х км/ч Путь по течению: Скорость Vпо теч. = (34 + х ) км/ч Время в пути t₁= 285/(34+x) ч. Путь против течения: Скорость V против теч. = (34 - х) км/ч Время в пути t₂ = 285/(34-x) ч. Время на путь туда-обратно : t₁ +t₂ = 17 ч. Уравнение. 285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x) знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34 285(34-x) + 285(34+x) = 17(34+x)(34-x) 9690 - 285x + 9690 + 285x= 17(34² - x² ) 19380 = 17(1156 -x²) |÷17 1140= 1156 - x² x²= 1156-1140 x² = 16 x₁ = - 4 не удовлетворяет условию задачи х₂ = 4 (км/ч) Vтеч.
0,5 * х = - 56
х = - 56 : 0,5
х = - 560 : 5
х = - 112
- 24 : х = 2,5
х = 2,5 : (-24)
х = 25 : (-240)
х = - 0,104
Пошаговое объяснение: