М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Artem636367
Artem636367
02.02.2021 03:27 •  Математика

Замени на дробь, равную данной, с наименьшим числителем: 20/85 =​

👇
Ответ:
Водород56
Водород56
02.02.2021
ответ:4/17Решение:20/85 : 5 = 4/17
4,4(90 оценок)
Открыть все ответы
Ответ:
Stasya1985
Stasya1985
02.02.2021
Задача 3.  Да, семиклассник может разрезать квадрат на прямоугольники 2,5*1, а восьмиклассник на 0,5*3,5.
Задача 4.  Так как длина интервала обратно пропорциональна числу трамваев, то трамваев должно быть 12: 4/5=15          15-12=3 трамвая надо добавить.
Задача 5.  4*2=8 серий в неделю
44/8=5 полных недель, 44-5*8=4
4/2=2 дня, значит во вторник.
Задача 6.   Червяк окажется вверху к вечеру 71 дня.
Задача 7.  Допустим, М=9, Б=8, У=7, Л=1, Ы=2, Г=4, О=3, К=0, Н=5
87130+8213=95343
булок было 95343 штуки.
Задача 8.  127 бумажек нужно разложить так: 1+2+4+8+16+32+64
Задача 9.  Если с соблюдением правил, то тоже 5.
Задача 10.  Не могло, так как при решении ответ получается 39,8-нецелое число.
Задача 11.  Не может, так как сумма 1+2+,,,+1985 нечетная
Задача 12.   Нет,не может. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако √99 нечетное число.
Задача 14.  100*4/2=200 дорог, так как из города выходит 4 дороги мы умножаем на 4, но делим на 2, так как одна дорога соединяет два города.
4,5(71 оценок)
Ответ:
elyukros
elyukros
02.02.2021
Рассмотрим условие "каждая цифра в записи — квадрат некоторого целого числа". Поскольку a,b,c- цифры, т.е. целые однозначные числа, то варианты квадратов это
0^2=0,   1^2=1,   2^2=4,   3^2=9, остальные не подходят,т.к. в квадрате дают двузначное число.
Т.о. a,b,c могут быть только 0,1,4 или  9.

Рассмотрим условие "сумма цифр числа abcb равна числу, которое записывается как ab".
а+b+c+b=a+2b+c
ab=10a+b
a+2b+c=10a+b
c=9a-b
При "a,b,c могут быть только 0,1,4 или  9."
При ближайшем рассмотрении остается только два варианта
9=9*1-0, т.е. а=1, b=0,с=9
Это 1091

и
0=9*1-9
Это 1909

Из этих вариантов 1909>1091.

ответ: 1909

Если Вы, конечно, правильно написали условие abcb, а не abcd
4,6(37 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ