Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2
а) к≠3, любое из чисел. например -9, или 14 - единственное решение.
не имеет решений, когда к=3 прямые параллельны, общих точек нет.
чтобы система имела решение, надо, чтобы прямые совпадали. т.е. к=3, а вместо 4 поставить -5, но т.к. уже 4 подобрана, то подобрать невозможно.
б) аналогично. упростим первое у=1.5х,
единсвт. решение , когда угловые коэф. различные -подобрать невозможно. при к-2 бесконечное множество решений. прямые совпадут. а при к≠-2 решений нет. т.к. прямые параллельны.
в)у=0.5-кх/2; у=0.5-4х
При к=8 бесконечное число решений, при к≠8 единственное, а для того, чтобы система не имела решений, к подобрать невозможно, т.к. уже совпадают 0.5 и 0.5- это ординаты точек пересечения графиков с осью оу.
а) к≠3, любое из чисел. например -9, или 14 - единственное решение.
не имеет решений, когда к=3 прямые параллельны, общих точек нет.
чтобы система имела решение, надо, чтобы прямые совпадали. т.е. к=3, а вместо 4 поставить -5, но т.к. уже 4 подобрана, то подобрать невозможно.
б) аналогично. упростим первое у=1.5х,
единсвт. решение , когда угловые коэф. различные -подобрать невозможно. при к-2 бесконечное множество решений. прямые совпадут. а при к≠-2 решений нет. т.к. прямые параллельны.
в)у=0.5-кх/2; у=0.5-4х
При к=8 бесконечное число решений, при к≠8 единственное, а для того, чтобы система не имела решений, к подобрать невозможно, т.к. уже совпадают 0.5 и 0.5- это ординаты точек пересечения графиков с осью оу.
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2