6) приравниваем выражение под модулем к нулю. x=3/4
Нарисуем интервал и разобьём его на 2 отрезка: (-беск. до 3/4] и (3/4 до +беск.)
Берём из первого интервала любое число, например -100. Подставляем в выражение 4x-3. Получается отрицательное число, значит знак на интервале (-беск. до 3/4] "-".
Аналогично, для второго интервала, берём число 100, подставляем. Знак интервала (3/4 до +беск.) "+".
Раскрываем модуль на 1-ом интервале:
-7/3(4x-3)+7,2=9
x= 39/70
Проверяем на интервале (-беск. до 3/4]
Данное число входит в этот интервал, значит является корнем.
Также на 2-ом, со знаком "+".
7/3(4x-3)+7,2=9
x=33/35
Проверяем на интервале (3/4 до +беск.). Данный корень является решением
ответ: x=39/70, x2=33/35
Чтобы узнать, какой вершине треугольника принадлежат координаты точки (13; -9), надо эти координаты подставить в уравнения заданных высот, проведенных из вершин В и С.
При проверке - не подходят, значит, это вершина А.
В уравнениях сторон АВ и АС угловые коэффициенты отрицательно обратны высотам.
АС: у = -3х + в. Подставим координаты точки А:
-9 = -3*13 + в, отсюда в = 39 - 9 = 30.
Получили уравнение стороны АС: у = -3х + 30.
Теперь можно найти координаты точки С, приравняв уравнения АС и высоты к АС: -3х + 30 = 2х - 5, 5х = 35, х = 35/5 = 7, у = -3*7 + 30 = 9.
Точка С(7; 9).
Аналогично определяем координаты точки В( -3; -1).