Отрезки соединяющие середины противоположных сторон выпуклого четырёхуголеника, взаимно перпендикулярны. Докажите что диагонали этого четырёхуголеника равны ДАЮ 60
Отрезки соединяющие середины противоположных сторон выпуклого четырёхуголеника, взаимно перпендикулярны. Докажите что диагонали этого четырёхуголеника равны.
Ууу, очень интересный вопрос. Для того, чтобы ответить на данный вопрос, нужно вспомнить о формах электронных орбиталей и размещение электронов по энергетическим уровням и подуровням. С находится во втором периоде, то есть уровней у него 2, следовательно он имеет подуровни s и p. Так выглядит его электронная формула: С 1s^2 2s^2 2p^2. Поскольку на последнем подуровне есть незаполненная ячейка (у р-подуровня их 3), а на этом же уровне есть заполненная ячейка s-подуровня, то С может взять и перекинуть один электрон с s-подуровня на свободную ячейку р-подуровня, таким образом у него остаётся неспаренных целых 4 электрона, отсюда и валентность и связей могут достигать 4. На пальцах это сложно объяснить, но это всё, что я могу
Всего 28 костей домино: 7 дублей и 21 с разными числами. Числа от 0 до 6. Количество вариантов выбора 2 костей равно 28*27=756. Порядок имеет значение. Это используем и дальше. Подсчитаем количество благоприятных случаев (чтобы кости подходили, т.е. совпадало хотя бы по одому значению на обеих костях). Если первая кость дубль, то это 7 вариантов. К ней подходит 6 "не дублей". Всего 7*6=42 Если первая - "не дубль", то таких костей 21. К первому числу подходит 6 костей и ко второму числу 6 костей, значит для первой кости - "не дубль" подходит 12 вариантов, а всего благоприятных исходов 21*12 = 252. Общее кол-во благоприятных исходов 42+252 = 294. Р = 294/756 = 0,388...≈ 0,389
Отрезки соединяющие середины противоположных сторон выпуклого четырёхуголеника, взаимно перпендикулярны. Докажите что диагонали этого четырёхуголеника равны.
Пошаговое объяснение: