Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

т.к. х=0, а у=14, то точка находится на оси ординат
Пошаговое объяснение:
первая точка - ось абсцисс
вторая - ось ординат
т.к. х=0, а у=14, то точка находится на оси ординат