Единственное четное простое число - это 2. Видим, что x=2 нас не устраивает, так как при этом в правой части получается четное число. Если y=2, то x^2-8=1; x=3 - нашли одно решение.
y=3 не подходит: x^2-18=1; x^2=19 - не является полным квадратом.
Далее мы можем предположить, что x и y больше 3.
Все целые числа делятся на три категории - вида 3k, 3k+1 и 3k-1, а так как мы предположили, что x и y больше 3 (а к тому же они простые), то они принадлежат второй или третьей категории. Возводя числа из этих категорий в квадрат, получаем числа из первой категории (ведь (3k+1)^2=9k^2+6k+1=3n+1 и (3k-1)^2=9k^2-6k=1=3m+1)
Для простоты перенесем 2y^2 направо, тогда правая часть = 2(3m+1)+1=6m+3=3(2m+1) делится на три, а левая на три не делится. Поэтому единственное решение -
a(1)+a(3)+a(5)=a(1)+a(1)+2d+a(1)+4d=3*a(1)+6*d=24
Отсюда a(1)+2d=8, a(1)=8-2d
Из второго уравнения:
a(1)^2+a(2)^2+a(3)^2=a(1)^2+(a(1)+d)^2+(a(1)+2d)^2=
a(1)^2+a(1)^2+2*a(1)d+d^2+a(1)^2+4*a(1)d+4*d^2=
3*a(1)^2+6*a(1)d+5*d^2=93
Подставим во второе уравнение a(1)=8-2d:
3*(8-2*d)^2+6*(8-2*d)*d+5*d^2=93
3*(4*d^2-32*d+64)+6*(8*d-2*d^2)+5*d^2=93
12*d^2-96*d+192+48*d-12*d^2+5*d^2-93=0
5*d^2-48*d+99=0
D=(-48)^2-4*5*99=18^2
d1,2=(48+-√(18^2))/(2*5)
d1=(48+18)/10=6.6 => a(1) = 8-2*6.6=-5.2
d2=(48-18)/10=3 => a(1) = 8-2*3=2
S(n) = (2*a(1) + d*(n-1)) * n / 2 - сумма арифметической прогрессии
1) При a(1)=-5.2, d=6.6
S(10) = (2*(-5.2) + 6.6*(10-1))*10 / 2 = 245
2) При a(1)=2, d=3
S(10) = (2 * 2 + 3 * (10 - 1)) * 10 / 2 = 155
ответ: 245 или 155.