ДАНО Y = (x²+24x)/(x-8) ИССЛЕДОВАНИЕ 1. Область определения - Х∈(-∞;8))∪(8;+∞). Разрыв при Х=8. 2. Пересечение с осью Х. Y=0 при х = -24 и х=0. 3. Пересечение с осью У. У(0) = 0. 4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞ Поведение в точке разрыва.limY(8-) = - ∞, limY(8) = +∞ 5. Исследование на чётность.Y(-x) ≠ Y(x). Функция ни чётная ни нечётная. 6. Производная функции.
7. Корни при Х1=0. Максимум Ymax= ?,при Х2 = ?, минимум – Ymin=?. Возрастает - Х∈(-8;24), убывает = Х∈(-∞;-8)∪(24;+∞). 8. Точек перегиба - нет. Выпуклая “горка» Х∈(-∞;8). 9. График в приложении.
ДАНО Y = (x²+24x)/(x-8) ИССЛЕДОВАНИЕ 1. Область определения - Х∈(-∞;8))∪(8;+∞). Разрыв при Х=8. 2. Пересечение с осью Х. Y=0 при х = -24 и х=0. 3. Пересечение с осью У. У(0) = 0. 4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞ Поведение в точке разрыва.limY(8-) = - ∞, limY(8) = +∞ 5. Исследование на чётность.Y(-x) ≠ Y(x). Функция ни чётная ни нечётная. 6. Производная функции.
7. Корни при Х1=0. Максимум Ymax= ?,при Х2 = ?, минимум – Ymin=?. Возрастает - Х∈(-8;24), убывает = Х∈(-∞;-8)∪(24;+∞). 8. Точек перегиба - нет. Выпуклая “горка» Х∈(-∞;8). 9. График в приложении.
x=-6
Пошаговое объяснение:
3,5(12+x)=-7*(-3)
42+3,5x=21
3,5x=21-42
3,5x=-21
x=-21/3,5
x=-6
-0,5(x-9)=-2,5*(-1,8)
-0,5x+4,5=4,5
-0,5x=4,5-4,5
-0,5x=0
x=0
3(-7-x)=4(x-2)
-21-3x=4x-8
-21+8=4x+3x
-13=7x
x=-13/7=-1 целая 6/7
8(4+x)=20(3-x)
32+8x=60-20x
20x+8x=60-32
28x=28
x=28/28
x=1