М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
missliss05
missliss05
10.03.2023 01:53 •  Математика

Сократить дробь 39p⁵g⁸:65p⁸g⁵
Очень

👇
Ответ:
darkbluefox
darkbluefox
10.03.2023

39p⁵g⁸:65p⁸g⁵=3g³/(5р³)

При делении степеней с одинаковыми основаниями показатели вычитаются. Например, р⁵/р⁸- делим числитель и знаменатель на р⁵, в числителе останется 1 а в знаменателе р⁸/р⁵=р⁸⁻⁵=р³

4,5(11 оценок)
Открыть все ответы
Ответ:
Gfykfyj
Gfykfyj
10.03.2023

Находим

dx/dt=-6Asin6t+6Bcos6t и (d^2 x)/(dt^2 )=-36Acos6t-36Bsin6t

Выполняем подстановку: (d^2 x)/(dt^2 )+36x=0

-36(Acos6t+Bsin6t)+36x=0

-36x+36x=0

В результате получили тождество, а это означает, что функция x=Acos6t+Bsin6t является решением указанного дифференциального уравнения (d^2 x)/(dt^2 )+36x=0. Подставляем π/4 в x: Acos 3π/2+Bsin 3π/2=-2 и получаем B=2. Подставляем π/4 в dx/dt:-6Asin 3π/2+6Bcos 3π/2=12√3 и получаем A=2√3.

ответ: x=2√3 cos6t+2sin6t частное решение.

Пошаговое объяснение:

4,7(39 оценок)
Ответ:
frid1999YT
frid1999YT
10.03.2023

Находим

dx/dt=-6Asin6t+6Bcos6t и (d^2 x)/(dt^2 )=-36Acos6t-36Bsin6t

Выполняем подстановку: (d^2 x)/(dt^2 )+36x=0

-36(Acos6t+Bsin6t)+36x=0

-36x+36x=0

В результате получили тождество, а это означает, что функция x=Acos6t+Bsin6t является решением указанного дифференциального уравнения (d^2 x)/(dt^2 )+36x=0. Подставляем π/4 в x: Acos 3π/2+Bsin 3π/2=-2 и получаем B=2. Подставляем π/4 в dx/dt:-6Asin 3π/2+6Bcos 3π/2=12√3 и получаем A=2√3.

ответ: x=2√3 cos6t+2sin6t частное решение.

Пошаговое объяснение:

4,5(45 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ