Пошаговое объяснение:
22,5 м
Объяснение:
Скорость точки прямолинейного движения изменяется по закону
υ(t)=15·t-5·t² м/с.
Тогда из υ(t)=0 получаем t₀ - время начало движения и t₁ - время остановки:
15·t-5·t²=0 ⇔ 5·t·(3-t)=0 ⇔ t₀=0 и t₁=3.
Так как производная от пути S(t) равна скорости, то есть S'(t)=υ(t), определяем S(t) интегрированием:
S(t)=∫υ(t)dt=∫(15·t-5·t²)dt=15·t²/2 - 5·t³/3 + С.
В начале движения пройдённый путь равна нулю и поэтому:
S(t)=0 ⇔ 15·0²/2 - 5·0³/3 + С = 0 ⇔ С=0.
Значит S(t)=15·t²/2 - 5·t³/3. Тогда
S(3)=15·3²/2 - 5·3³/3=135/2 - 45=67,5-45=22,5 м.
Y= 2x³-3x²-12x-1
ИССЛЕДОВАНИЕ
1. Область определения - Х∈(-∞;+∞) - непрерывная.
2. Пересечение с осью Х
Y(x)=0 при x1 = -1.7555, x2 = - 0.08525, [3 = 3.34
3. Пересечение с осью У Y(0)= -1.
4. Проверка на четность.
Y(-x) = - 2x³ -3*x² + 12x - 1 ≠ Y(x) - функция ни чётная ни нечётная.
5. Первая производная
Y'(x) = 6x² - 6x - 12 - график парабола
6. Монотонность - корни производной - x1 = -1 x2 = 2
Возрастает - Х∈(-∞;-1]∪[2;+∞)
Ymax(-1) = 6
Убывает - X∈[-1;2]
Ymin(2) = - 21.
7. Вторая производная
Y"(x) = 12x - 6 - график - прямая
8. Точка перегиба
Y"(x)=0 при Х = 0,5 и Y(0.5) = -7.5
9. Выпуклая - "горка" - X∈(-∞;0.5]
Вогнутая - "ложка" - X∈[0.5;+∞)
10. График прилагается.
Пошаговое объяснение:
ВОТ НАДЕЮСЬ