Для спортивной школы по борьбе заказали спортивное трико. В таблицы приведена частота разных размеров спортивного треко. Какова вероятность того что случайным образом взятое трико будет 44 размера.
При расчётах подобных примеров нужно соблюдать определённый порядок действий, который предполагает выполнение правил: если выражение содержит скобки, то действия в скобках выполняются в первую очередь, если в скобках присутствуют действия двух ступеней (складывание\вычитание — первая ступень и умножение\деление — вторая ступень), то в первую очередь выполняются действия второй ступени, а во вторую - действия первой ступени. а) 2*11*5*5*4=22*5*5*4=110*5*4=550*4=2200; б) 35*28+15*28=28(35+15)=28*50=1400 (для данного примера можно вынести за скобки общий множитель “28”); в) (100-5)*16=95*16=1520.
n=2+10=12;
Благоприятных исходов вытащить белый шар (2белых, значит или 1 или второй);
m=2;
Вероятность по формуле
P= m/n=2/12=1/6
2 ящик, все шары считаем
Всех исходов
n=8+4=12;
Благоприятных исходов вытащить белый, их 8, любой 1 из 8.
m=8
Вероятность
P=m/n=8/12=2/3
Теперь нашли раздельно вероятность 1 ящик 1/6 и 2 ящик 2/3; события не зависимые, значит вероятности перемножаем и будет общая
Р общее = 1/6• 2/3= 2/18= 1/9=~~0,1
ответ: вероятность 0,1 что оба шара белые.
2)) Всех шаров, исходов
n=10+15+20+25= 70
Белых, вытащить 1, можно любой из 10;
благоприятных исходов m=10;
P=m/n = 10/70=1/7=~~ 0,14
ответ: вероятность 0,14 вытащить белый шар.