17:1/3=51 пассажир в 1 вагоне
51-13=38 пассажиров во 2 вагон
51+38=89 пассажиров в двух вагонах
ответ: 89 пассажиров
Пусть Петя в первый день решил x задач. Тогда в оставшиеся дни он решил x + 2, x + 4, x + 6, x + 8 задач. Всего в сборнике оказывается 5x + 20 задач. Вася в первый день решил x – 1 задачу. В следующие дни он решал x, x + 1, x + 2, x + 3, x + 4, ... задач. За пять дней решить все задачи Вася не мог. Если Вася решил все задачи сборника за шесть дней, то он решил 6x + 9 задач. Уравнение 5x + 20 = 6x + 9 имеет решение x = 11. Тем самым приведен пример, удовлетворяющий условию: Вася решил в первый день 10 задач, Петя — 11 задач
10 городов
Пошаговое объяснение:
1) Обозначим количество городов в 1-ой республике за n, а во 2-ой - за m.
2) По условию каждый город в 1-ой респ соединен с каждым городом 2-ой респ и плюс еще со столичным городом, т. е. всего дорог:
1 город с m городами и со столицей m+1 дорог
n городов с m городами и со столицей n*(m+1) дорог
3) Также и с городами во 2-ой респ, но теперь будем считать только те дороги, которые связывают их со столицей, так как мы уже посчитали дороги, связывающие с городами в 1-ой респ. Их будет m.
4) Значит в стране всего n*(m+1)+m=29 дорог и из этого нам надо найти наименьшее значение суммы n+m+1 (включая столицу):
n*(m+1)+m=29
nm+n+m=29
n+m+1=30-nm, Сюда можно подобрать числа n=4 и m=5, так как их значения не могут быть дробными или отрицательными(n,m∈N, след-но n+m+1>0, а значит и 30-nm>0, откуда nm<30 и чтобы равенство n+m+1=30-nm было верным подходят только n=4 и m=5, так как n,m∈N и nm<30)
Следовательно наименьшее количество городов может равнятся n+m+1=4+5+1=10
ответ: 10 городов
Значит, всего пассажиров 17:1/3 или же 17*3=51
Во втором вагоне на 13 человек меньше, чем в первом, следовательно
Во втором вагоне 51-13=38 человек
Всего в двух вагонах 51+38=89 человек
Пошаговое объяснение: