Например, это могут быть числа: 121; 151.
Пошаговое объяснение:
Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.
Найдем наименьшее общее кратное чисел 2, 3, 5.
Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.
Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).
По условию число должно быть больше 100:
30n + 1 > 100; 30n > 99; n >3,3.
⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.
Например:
n = 4, 4 * 30 + 1 = 121
121 : 2 = 60 (ост. 1)
121 : 3 = 40 (ост. 1)
121 : 5 = 24 (ост. 1).
Или
n = 5, 30 * 5 + 1 = 151
151 : 2 = 75 (ост. 1 )
151 : 3 = 50 (ост. 1 )
151 : 5 = 30 (ост. 1 ).
1) 1,25; 2) 1,6; 3) 2,5; 4) 1,8; 5) 6;
6) 12 12/35
Пошаговое объяснение:
1) 5:6=2х:3
2х*6=5*3
12х=15
х=15:12=1,25
2) 5х:12=2:3
5х*3=12*2
15х=24
х=24:15=1,6
3) 4:9=8х:45
8х*9=4*45
72х=180
х=180:72
х=2,5
4) 6:7=10х:21
10х*7=6*21
70х=126
х=126:70
х=1,8
5) 8:9=4х:27
4х*9=8*27
36х=216
х=216:36
х=6
6) 27:5х=9:16
5х*9=27*16
45х=432
х=432:35
х=12 12/35