author_link
Wintersun849
хорошист
21 ответов
2.1 тыс. пользователей, получивших
Так как треугольник ABC - равнобедренный ( по условию ) медиана AH, равная 8 см, будет являться также высотой и биссектрисой. Треугольник ABH - прямоугольный, AB = 10 см,
AH = 8 см. По теореме Пифагора: BH ² = AB ² - AH ²
BH ² = 10 ² - 8 ² = 100 - 64 = 36
BH = 6 см.
BH - половина BC => BC = 12 см. Треугольник BCC1 - прямоугольный. По теореме Пифагора находим высоту призмы: CC1 ² = BC1 ² - BC ²
CC1 ² = 13 ² - 12 ² = 169 - 144 = 25.
CC1 = 5 см.
Объем призмы равен произведению площади основания на высоту: V = S * h
Высоту мы уже нашли - осталось найти площадь основания.
Треугольник ABC содержит в себе два прямоугольных треугольника => площадь ABC равна сумме площадей этих треугольников. S ABH = 8 * 6 * 0,5 = 24 см ². Площадь второго треугольника тоже равна 24. Значит S ABC = 24 + 24 = 48 см ².
V = 48 * 5 = 240 см ³.
Рассчитаем НОД
Алгоритм Евклида работает так: (a,b) = (b, a%b)
(% - остаток от деления, скобки - нод)
Тогда (45649, 16013) = (16013, 45649%16013) = (16013, 13623) = (13623, 16013%13623) = (13623, 2390) = (2390, 13623%2390) = (2390, 1673) = (1673, 2390%1673) = (1673, 717) = (717, 1673%717) = (717, 239) = 239 (717 поделилось на 239 нацело)
Итак, НОД этих двух чисел = 239
НОК невозможно рассчитать с алгоритма Евклида, зато мы можем воспользоваться формулой
a*b=НОД*НОК
a*b = 730 977 437
НОК = 730 977 437 / 239 = 3 058 483
5929:(789-778)^2
1) 789-778=11
2) 11^2=121
3) 5929:121=49.
ответ: 49.
Пошаговое объяснение: