Комбинаторика. Основные комбинаторные правила. 2. Классификация соединений элементов некоторого множества. 3. Формулы для подсчета числа размещений, перестановок, сочетаний
Комбинаторика – один из разделов дискретной математики, изучающий методы решения задач, связанных с выбором и расположением элементов дискретного множества. Методы комбинаторики позволяют в теории вероятностей определить элементарных
событий W и подсчитать число элементарных событий, благоприятствующих случайному событию А.
Сформулируем на языке событий два правила, которые применяются при комбинаторных подсчетах.
Правило суммы. Если событие А может осуществиться а независимое от него событие В то событие «или А, или В», т. е. событие А + В может осуществиться Пример 2.1. Шарики распределены по двум ящикам: в первом m шариков, во втором – k. Произвольно из какого-либо ящика вынимаем шарик. Сколькими это можно сделать?
Из первого ящика шарик можно вынуть m разными из второго – k разными Всего ответ: n = m + k.
Правило произведения (основное правило комбинаторики). Если событие А может осуществиться а независимое от него событие В то событие «А и В», т. е. событие А × В, может осуществиться Пошаговое объяснение:
- не поддаваться паники.
- прикрыть рот от попадания пыли, так как это может вызвать удушье.
- осмотреть и ощупать себя, дышать глубоко и ровно. если есть ранение оказать посильную первую растирайте придавленные конечности
- постараться определить свое местонахождение, нет ли рядом других людей: прислушаться, подать голос.
- не делать резких движений.
- поискать предметы, которые могли подать световые или звуковые сигналы.
- не зажигать спичку или зажигалку.
- если есть жидкость — пейте как можно больше.
- укрепить завал, установите подпорки под конструкцию над вами (если нет возможности выбраться)
ответ:27км/ч
Пошаговое объяснение: