Задача из раздела комбинаторика, можно воспользоваться формулой размещения, но так как решений очевидно, что решений будет немного, для наглядности, выполним решение простым перебором вариантов. Итак, надо учесть, что искомое число должно на первом месте иметь цифру, отличную от нуля. Какие цифры будут составлять искомое число? По условию сумма должна равняться Трем. Значит это могут быть только следующие варианты: 1. 3 0 0 0 0 0 1 вариант. 2. 2 1 0 0 0 0 или ["двигаем" единичку вправо] 2 0 1 0 0 0 или 5 вариантов.
3. 1 2 0 0 0 0 [поменяли единицу и двойку и теперь двойку двигаем вправо] 1 0 2 0 0 0 5 вариантов.
4. Следующие варианты будут состоять из единиц и нолей. 1 1 1 0 0 0 [ двигаем правую единичку вправо] 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 4 варианта
[теперь рассмотрим положения, когда первая цифра единица зафиксирована на первом месте, а остальные две единицы занимают другие положения, не рассмотренные ранее]
Оценка по столбцам: минимально возможное количество закрашенных клеток - 1·10=10. Оценка по строкам: минимально возможное количество закрашенных клеток - 3·10=30. Если разместить в каждую строку по 3 закрашенных клетки, то общее их количество не удастся разделить на столбцы по 1 или 7 клеток, так как система: не имеет решения в натуральных числах (первое уравнение - общее число столбцов, второе - количество закрашенных клеток). Если постепенно увеличивать общее количество закрашенных клеток, то окажется, что при их количестве, равном 34, система даст решение (4; 6). Значит, в 4 столбцах будет закрашено 7 клеток, а в 6 столбцах - одна. Дополнительно введенные 4 клетки равномерно распределим между этими строками, пользуясь условием, что в строке может быть 4 закрашенных клетки. \Пример расстановки на картинке. ответ: 34
Итак, надо учесть, что искомое число должно на первом месте иметь цифру, отличную от нуля.
Какие цифры будут составлять искомое число? По условию сумма должна равняться Трем. Значит это могут быть только следующие варианты:
1. 3 0 0 0 0 0 1 вариант.
2. 2 1 0 0 0 0 или ["двигаем" единичку вправо]
2 0 1 0 0 0 или 5 вариантов.
3. 1 2 0 0 0 0 [поменяли единицу и двойку и теперь двойку двигаем вправо]
1 0 2 0 0 0 5 вариантов.
4. Следующие варианты будут состоять из единиц и нолей.
1 1 1 0 0 0 [ двигаем правую единичку вправо]
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1 4 варианта
[теперь двигаем вправо две единицы сразу]
1 0 1 1 0 0
1 0 0 1 1 0
1 0 0 0 1 1 3 варианта
[теперь рассмотрим положения, когда первая цифра единица зафиксирована на первом месте, а остальные две единицы занимают другие положения, не рассмотренные ранее]
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 0 1 0 3 варианта
ИТОГО: 21 вариант.