Разложим 36 на множители: 36 = 9 * 4.
Искомое число должно делиться на 9 и на 4.
Если в записи десятизначного числа встречаются все десять цифр, то сумма его цифр 0 + 1 + 2 + 3 + ... + 9 = (1 + 9) * 9 / 2 = 45.
Следовательно, сумма цифр такого числа делится 9 и по признаку делимости на 9 это число делится на 9.
По признаку делимости на 4 последние две цифры числа должны представлять двузначное число, делящееся на 4.
Максимальное двузначное число делящееся на 4 - 96.
Для того, чтобы указать минимальное 10-тизначное число, мы должны искать числа с наименьшими старшими разрядами.
Поэтому искомое число:
1023457896 и последние три его цифры 896.
А) (с-2)(с+3) - с^2= с^2 -2c+3c-6-c^2=c-6
B) 7(x+8) + (x+8)(x-8)= (x+8)(7+x+8)=(x+8)(x+15)
C) (x+5)*4x-(2x-5)^2=4x^2+20x-(4x^2-20x+25)=40x-25
2
A) 8x^2-8y^2= 8(x^2-y^2)=8(x-y)(x+y)
B) -a^2+6a-9=-(a^2-6a+9)= -(a-3)^2
C) ab^3-ba^3= ab(a^2-b^2)= ab(a-b)(a+b)
4
A) 3x-3y+x^2y-xy^2= x(3+xy) - y(3+xy)= (x-y)(3+xy)
B) a^3-8= (a-2)(a^2+2a+4)
5
-y^2+2y-5<0?
-y^2+2y-5= -y^2+2y-1-4= -(y^2-2y+1)-4= -(y-1)^2 -4
Таким образом, квадрат любого числа принимает лишь положительные значения, однако в этом случае перед квадратом стоит знак минус, что означает, что данный квадрат если вытащить его за скобки сразу станет отрицательным, к тому же из этого числа отнимают 4, даже если квадрат будет равен нулю, то общее значение выражения будет равно (-4), что является отрицательным числом. Из-за этого данное выражение принимает только отрицательные значения.