М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Student223
Student223
06.07.2020 02:07 •  Математика

А)0,4200

b)-250

c)146

d)7,78​

👇
Ответ:
LadyBoy357
LadyBoy357
06.07.2020

как решать где само читания ???

4,7(92 оценок)
Открыть все ответы
Ответ:
darmon2121
darmon2121
06.07.2020
Пирамида правильная, значит АВ=ВС=АС=4 и AS=BS=CS=6.
Из точек А и В проведем перпендикуляры к ребру SC. Получившийся треугольник АВН является искомым сечением, так как плоскость АВН перпендикулярна ребру SC.
Найдем площадь этого треугольника. 
Треугольник   АSС равнобедренный со сторонами АS=CS=6 и основанием АС=4. Высоту этого треугольника АН можно найти по Пифагору из прямоугольных треугольников ASH и ACH.
АН²=AS²-HS²(1) и  АН²=AС²-CH², или АН²=AС²-(SC-HS)² (2).
Подставим известные значения и приравняем оба выражения.
36-HS² = 16-(6-HS)².  Отсюда НS=14/3, a АН²= 36-196/9 = 128/9.
Найдем высоту треугольника АВН. По Пифагору
НК = √(АН²-АК²) = √(128/9-4) = √(92/9).
Тогда площадь сечения равна (1/2)*АВ*НК = 2*√(92/9) = (4/3)*√23.

2-й вариант решения:
Мы видим, что плоскость сечения делит пирамиду на две: SАВН и CАВН, у первой из которых высота SН, а у второй - СН (так как SС перпендикулярна плоскости АВН).
Объем данной нам пирамиды равен сумме объемов двух пирамид (SАВН и САВН). По формуле объема пирамиды имеем:
 (1/3)*Sabh*SН + (1/3)*Sabh*СН = Vsabc.
То есть VsаЬс=(1/3)*Sabh*(SН+НС) =(1/З)SаЬh*6 = 2SаЬh.
Объем данной нам пирамиды равен (1/3)*SаЬс*SО, где SО - высота пирамиды. Площадь основания (площадь равностороннего треугольника) равна (√3/4)*а². В нашем случае Sа6с= 4√3. Найдем SО. В правильном треугольнике высота равна h= (√3/2)*а и делится точкой О(центром треугольника) в отношении 2:1 считая от вершины. В нашем случае
ОС= (2/3)*(√3/2)*4=4√3/3.
Тогда по Пифагору SO=√(36-16/3)=√92/√3 = 2√23/√3.
Следовательно, Vsabc = (1/3)*Sа6с*SО = (8/3)*√23.
Но Vsabc=2SаЬh, отсюда
SаЬh (4/3)*√23.

ответ: площадь сечения равна (4/3)*√23.

Вправильной треугольной пирамиде sabc боковое ребро sa =6, а сторона основания ab = 4. найдите площа
4,8(84 оценок)
Ответ:
ДАШУНЯ1311
ДАШУНЯ1311
06.07.2020
Если разложить билеты с первого до последнего и складывать числа номеров первый+последний, второй+ предпоследний, третий + предпредпоследний и так далее, то получим, что
а) для четного числа мест
В сумме это всегда число последнего номера+1, а таких пар в два раза меньше, чем количество номеров мест
То есть, если х - это количество мест, то количество пар х/2, а сумма в каждой паре х+1.
Значит сумма всех чисел в номерах
(х+1)•(х/2)=(х^2+х)/2
б) для нечетного числа мест
Пар получается х-1, в которых сумма чисел равна х, и остается непарное последнее число х.
Значит сумма чисел получается
[(х-1)/2]•х+х=(х^2+х)/2
То есть в обоих случаях одинаковая сумма
Найдем примерное число номеров
(х^2+х)/2=857
х^2+х=1714
х^2+х-1714=0
Уравнение имеет два корня: примерно 40 и примерно -42 (этот корень нам не подходит, так как не может быть отрицательного количества мест)
Если количество мест 40, то сумма всех чисел в номерах мест:
(40^2 + 40)/2=(1600+40)/2=1640/2=820
Тогда можно найти, на какое место был продан лишний билет:
857-820=37

Если количество мест 41, то сумма всех чисел в номерах мест:
(41^2 + 41)/2=(1681+41)/2=1722/2=861
861>857, поэтому этот вариант нам не подходит

Если количество мест 39, то сумма всех чисел в номерах мест:
(39^2 + 39)/2=(1521+39/2=1560/2=780
Тогда можно найти, на какое место был продан лишний билет:
857-780=77, этот вариант не подходит, потому что для 39 мест не может быть места с номером 77
Итак, ответ: лишний билет был продан на 37 место
4,7(77 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ