можно, только если эти квадраты будут разными
Пошаговое объяснение:
1) Если имеется ввиду что два квадрата будут иметь одинаковую площадь.
Для этого нужно вычислить площадь квадрата, разделить ее на 2 и извлечь корень, чтобы узнать длину стороны квадрата с такой площадью.
15²=225 см² 225/2=112,5 √112,5≈10,6 (не целое)
26²=676 см² 676/2=338 √338≈18,4 (не целое)
Значит и для 15 см и для 26 см - нельзя.
2) Если размер квадратов произвольный, то нужно разложить площади исходных квадратов на сумму двух площадей, которые являются квадратами целых чисел (квадраты берем из "Таблицы квадратов чисел").
225=81+144 =9²+12² (т.е. можно сделать квадраты со стороной 9 см и 12 см)
676=100+576=10²+24² (т.е. можно сделать квадраты со стороной 10 см и 24 см)
Пошаговое объяснение:
1) а)15a(a-b)/40b(a-b)=3a/8b
Поскольку в числителе и знаменателе есть одинаковое значение и оно находится под знаком умножения (в нашем случае а-б) мы можем его взаимно сократить. числа 15 и 40 делятся на 5, поэтому мы сократили их на это число и получили 3/8
б)у^2+у/у=у(у+1)/у=у+1
Тут все проще, в числителе выносим у за скобки и получаем выражение у(у+1), а далее просто сокращаем игрики, получая ответ.
2)
а)(12х-7/15х)+(3х-2/15х)=15х-9/15х=3(5х-3)/15х=5х-3/5х
б)(ах+ау/ху^2)*((х^2)у/3х+3у)=ау(х^3)+а(х^2)(у^2)/3(х^2)(у^2)+3х(у^3)=(ау(х^2))(х+у)/(3х(у^2))(х+у)=ау(х^2)/3х(у^2)
3)(у^2-6у+9/у^2-9)/(10у-30/у^2+3у)=((у-3)^2/(у-3)(у+3))/(10(у-3)/у(у+3))=(у-3/у+3)/(10(у-3)/у(у+3))=((у-3)(у^2+3))/(у+3)(10у-30)=(67*493)/(73*670)