Построение ясно из чертежа. АВ=СД=17см. Из равенства боковых сторон следует, что ∠ABE=∠CFD=90°. AD=44 см, АС=39 см. Проведем в трапеции высоты BE и CF, обозначив из длину через h. Эти высоты отсекут от основания AD отрезки AE и DF, длину которых мы обозначим через x. Рассматриваем два прямоугольных треугольника: ΔABE и ΔACF. Для каждого из них запишем теорему Пифагора. AB² = h² + x² → h² = AB² - x²; AC² = h² + (AD - x)² → h² = AC² - (AD - x)² Поскольку левые этих уравнений части равны, то равны и их правые части. AB² - x² = AC² - (AD - x)² 17² - x² = 33² - (44 - x)² Раскрывая скобки и приводя подобные члены получаем уравнение 88·х = 704 → х = 8 (см) Теперь находим BC = AD - 2·x = 44 - 2·8 = 28 (см) Осталось найти высоту h. Найдем ее из уравнения h² = AB² - x²; h² = 17² - 8² = 289 - 64 = 225; h=√225 = 15 (см)
Пусть скорость течения х, скорость катера k*х, и они плыли t часов. Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение: 1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1), Тогда имеем: ((к+1)/(к-1))^2=1,5. Решаем полученное квадратное уравнение: k^2+2*k+1=1,5*k^2-3*k+1,5 0,5*k^2-5*k+0,5=0 k^2-10*k+1=0 k=5 ± √(24). Очевидно. что k > 1, значит k=5 + √(24).
ответ: -41/21
в сумме будет -
извините если что-то не так