Задача 1. Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?
решение задач на движение в одном направлении
Решение: Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на:
40 · 4 = 160 (км).
Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:
60 - 40 = 20 (км/ч) — это скорость сближения автомобилей.
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:
160 : 20 = 8 (ч).
Решение задачи по действиям можно записать так:
1) 40 · 4 = 160 (км) — расстояние между автомобилями,
2) 60 - 40 = 20 (км/ч) — скорость сближения автомобилей,
3) 160 : 20 = 8 (ч).
ответ: Второй автомобиль догонит первый через 8 часов.
Задача 2. Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
задачи на сближение
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:
5 - 4 = 1 (км/ч).
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:
5 : 1 = 5 (ч).
Решение задачи по действиям можно записать так:
1) 5 - 4 = 1 (км/ч) — это скорость сближения пешеходов,
2) 5 : 1 = 5 (ч).
ответ: Через 5 часов второй пешеход догонит первого.
Задача. Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго — 40 км/ч.
Пошаговое объяснение:
Вероятность, что изделие имеет дефект а p(a) = 0,06. вероятность, что изделие имеет дефект в p(b) = 0,07. вероятность, что изделие имеет дефект а или дефект в, p(aub) = 0,1 (то есть 10%, т.к. процент годной продукции по условию 90%) p(aub) = p(a) + p(b) - p(a∩b), где p(a∩b) - это вероятность, что изделие имеет и дефект а, и дефект в. тогда (выражая p(a∩b) из предыдущего равенства) p(a∩b) = p(a)+p(b) - p(aub) = 0,06 + 0,07 - 0,1 = 0,13 - 0,1 = 0,03. искомая вероятность, это вероятность, что изделие имеет только дефект а и при этом не имеет дефекта в, то есть искомая вероятность это p(a - a∩b) = p(a) - p(a∩b) = 0,06 - 0,03 = 0,03.
ответ 0,03
Вот такой ответ! Удачи★★♥♥
В каком классе ты? Какое задание?