ответ:
найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба).
по свойству высоты h прямоугольного треугольника она равна среднему из длин отрезков, на которые эта высота делит гипотенузу.
h = √(4*25)= √100 = 10 см.
теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h.
(d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см.
(d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
ответ:
диагонали ромба равны 10√29 и 4√29 см
подробнее - на -
пошаговое объяснение:
Объяснение:
Ищем делимость числа на 6. Для этого нужно проверить, делится ли число на 2 и на 3:
На 2 делится, потому что последняя цифра этого числа - чётная.
На 3 нет, потому что сумма всех цифр(110) этого числа не делится на 3.
Думаю дальнейшие расчёты не требуются. ответ: нет