ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)y` > 0 на (0; + ∞), значит функция возрастает на этом интервале и не имеет точки максимума.
Обозначим данную пирамиду буквами . ед. Проведём высоту . Точка - центр - точка пересечения, медиан, высот и биссектрис треугольника. Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне основания пирамиды. Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник. . Проведём высоту в . Т.к. - равносторонний ⇒ - высота, медиана, биссектриса.
Высота и апофема имеют общее основание, а именно точку , т.к. - медиана, а апофема делит пополам (по свойству). . Рассмотрим : - прямоугольный, так как - высота. Найдём высоту по теореме Пифагора: ед. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины. ед. ед. Рассмотрим : - прямоугольный, так как - высота. Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на . ед. Найдём апофему по теореме Пифагора: ед.
0,5x2 + 21x + 110·lnx + 43
ОДЗ: x > 0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)y` > 0 на (0; + ∞), значит функция возрастает на этом интервале и не имеет точки максимума.