Пусть х литров - первоначальное количество бензина в баке.
После того как в первый день вывезли 160л, бензина осталось х-160.
На второй день вывезли 1/4 часть остатка:
(х-160)/4=0,25х-40
Бензина в баке осталось х-160-(0,25х-40)=х-160-0,25х+40=0,75х-120.
На третий день вывезли 40% остатка:
(0,75х-120)*40%/100%=(0,75х-120)*0,4=0,3х-48
В итоге в баке осталось:
0,75х-120-(0,3х-48)=9000
0,75х-120-0,3х+48=9000
0,45х-72=9000
0,45х=9072
х=20160 литров бензина изначально было в баке.
0,3х-48=0,3*20160-48=6000 литров бензина было вывезено на третий день.
V бензина = ширина*длина*высота
V бензина = 20160л=20,16 м3
ширина =4м
длина=5м
высота = 20,16/4/5=1,008м - начальная высота бензина в баке.
В решении.
Пошаговое объяснение:
Решить неравенства:
1) х(х+7)≥0;
Приравнять к нулю и решить квадратное уравнение:
х(х + 7) = 0; неполное квадратное уравнение
х₁ = 0;
х + 7 = 0
х₂ = -7;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -7 и х= 0.
Решение неравенства: х∈(-∞; -7]∪[0; +∞).
Неравенство нестрогое, скобки квадратные, а знаки бесконечности всегда с круглой скобкой.
2) (х-1)(х+2)≤0;
Приравнять к нулю и решить квадратное уравнение:
(х - 1)(х + 2) = 0;
х - 1 = 0
х₁ = 1;
х + 2 = 0
х₂ = -2;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -2 и х= 1.
Решение неравенства: х∈[-2; 1].
Неравенство нестрогое, скобки квадратные.
3) х- х²+2<0;
Приравнять к нулю и решить квадратное уравнение:
х - х² + 2 = 0
-х² + х + 2 = 0/-1
х² - х - 2 = 0
D=b²-4ac =1 + 8 = 9 √D=3
х₁=(-b-√D)/2a
х₁=(1-3)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(1+3)/2
х₂=4/2
х₂=2;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х= -1 и х= 2.
Решение неравенства: х∈(-∞; -1)∪(2; +∞).
Неравенство строгое, скобки круглые.
4) -х²-5х+6>0;
Приравнять к нулю и решить квадратное уравнение:
-х² - 5х + 6 = 0/-1
х² + 5х - 6 = 0
D=b²-4ac = 25 + 24 = 49 √D=7
х₁=(-b-√D)/2a
х₁=(-5-7)/2
х₁= -12/2
х₁= -6;
х₂=(-b+√D)/2a
х₂=(-5+7)/2
х₂=2/2
х₂=1;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х= -6 и х= 1.
Решение неравенства: х∈(-6; 1).
Неравенство строгое, скобки круглые.
5) х(х+2)<15
Приравнять к нулю и решить квадратное уравнение:
х(х + 2) = 15
х² + 2х - 15 = 0
D=b²-4ac =4 + 60 = 64 √D=8
х₁=(-b-√D)/2a
х₁=(-2-8)/2
х₁= -10/2
х₁= -5;
х₂=(-b+√D)/2a
х₂=(-2+8)/2
х₂=6/2
х₂=3;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -5 и х= 3.
Решение неравенства: х∈(-5; 3).
Неравенство строгое, скобки круглые.
a-32кг
b-18кг
Не правильно то сорри