Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.
Из истории десятичных дробейДесятичные дроби появились еще в III в. до н.э. в Древнем Китае, где использовалась десятичная система счисления. Китайский математик III в. Лю Хуэй рекомендовал пользоваться дробями со знаменателем 10, 100 и т.д. при извлечении квадратных корней. Он имел ввиду правило,которым впоследствии часто пользовались многие арабские и европейские математики. Именно это правило, наряду с некоторыми другими вычислительными приемами, во многом введению в науку десятичных дробей.
В XV в. полную теорию десятичных дробей разработал самаркандский астроном Джемшид аль-Каши в трактате "Ключ к арифметике" (1427 г.). Он подробно изложил правила действий с десятичными дробями. Возможно, что аль-Каши не знал о том, что десятичные дроби применялись в Китае. Сам он считал их своим изобретением. Несомненно то, что постоянное использование десятичных дробей и описание правил действий с ними является непосредственной заслугой ученого. Но трактаты его не были известны европейским ученым. Они самостоятельно разработали теорию десятичных дробей.Мысль о построении такой системы дробей время от вреени появлялась в учебниках арифметики уже с XIII в. Об этом писал Иордан Неморарий в сочинении "Арифметика, изложенная в десяти книгах".Французский ученый Франсуа Виет в 1579 г. опубликовал в Париже свой труд "Математический канон", в котором привел тригонометрические таблицы, при составлении которых использовал десятичные дроби. При записи десятичных дробей он не придерживался какого=либо определенного иногда отделял целую часть от дробной вертикальной чертой, иногда цифры целой части изображал жирным шрифтом, иногда цифры дробной части писал мельче. Так благодаря Виету десятичные дроби стали проникать в научные расчеты, но в повседневную практику они не вошли.Голландский ученый Симон Стевин считал, что десятичными дробями нужно пользоваться во всех практических расчетах. Он посвятил этому свой труд "Десятая" (1585 г.), в котором ввел десятичные дроби, разработал правила арифметических действий с ними и предложил десятичную систему денежных единиц, мер и весов."Десятая" быстро стала известной в Европе. Издав книгу в 1585 г. на фламандском языке, автор в тот же год перевел ее на французский язык, а в 1601 она была опубликована на английском языке. Записывал Стевин дроби не так, как теперь. Для указания дробной части использовался 0, обведенный кружком. Впервые запятую при записи дробей стали применять в 1592 г. В Англии же вместо запятой стали использовать точку, в США она используется до сих пор. Использовать запятую в качестве разделительного знака, как и точку, предложил в 1616-1617 г.г. знаменитый английский математик Джон Непер. Астроноа Иоганн Кеплер применял десятичную запятую в своих работах.В России учение о десятичных дробях впервые изложил Л.Ф. Магницкий в своей "Арифметике".
Название
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.