сумки было три белых 2 черный и песен из ручек какое наименьшее количество ручку надо взять рисунки не года так чтобы среди не обязательно козу ходьбы 2 ручка снова цвета
ПРИМЕР. В задачах даны координаты точек A,B,C. Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC.
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X=xj-xi; Y=yj-yi
здесь X, Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj
Например, для вектора AB: X=x2-x1=12-7=5; Y=y2-y1=-1-(-4)=3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:
3) Угол между прямыми. Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:
где a1a2=X1X2+Y1Y2
Найдем угол между сторонами AB и AC
γ = arccos(0.88) = 28.070
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB. Каноническое уравнение прямой:
П - 26 кг г - на 21 кг меньше чем п (нарисуешь стрелку к п) т - на 47 кг больше чем г ( нарисуешь стрелку к г)
1) Нужно узнать, сколько весит гусь 26 - 21 = 5 (кг) - вес гуся 2) нужно узнать вес телёнка 47 + 5 = 52 (кг) - вес телёнка Вес телёнка - 52 кг
У нас дано 3 животного поросёнок, гусь, телёнок. Что-бы было удобнее пишем только их первую букву п, г, т затем пишем их вес, п - 26кг г - на 21кг меньше чем п. (то есть отнимать будем) Рисуем стрелку чтобы было понятней т - на 47 кг тяжелее г (добавление)
ПРИМЕР. В задачах даны координаты точек A,B,C. Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC.
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X=xj-xi; Y=yj-yi
здесь X, Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj
Например, для вектора AB: X=x2-x1=12-7=5; Y=y2-y1=-1-(-4)=3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:
3) Угол между прямыми. Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:
где a1a2=X1X2+Y1Y2
Найдем угол между сторонами AB и AC
γ = arccos(0.88) = 28.070
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB. Каноническое уравнение прямой:
или
y=3/5x-41/5 или 5y-3x+41=0