М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DashaLutova
DashaLutova
30.09.2020 04:24 •  Математика

Симметричную монету бросают 9 раз найдите вероятность события: а) количество выпавших орлов кратно числу 3
в) количество выпавших орлов не делится на 4

👇
Ответ:
otchygash2
otchygash2
30.09.2020
Для решения этой задачи мы будем использовать комбинаторику и вероятность событий.

а) Для того чтобы количество выпавших орлов было кратно числу 3, нужно посчитать сколько существует комбинаций бросков монеты, в которых число орлов кратно 3.

Мы знаем, что монету бросают 9 раз, и каждый бросок может закончиться или орлом, или решкой. Поскольку монета симметрична, то вероятность выпадения орла или решки в каждом броске одинаковая и равна 1/2.

Подсчитаем количество комбинаций, в которых число орлов кратно 3. Рассмотрим все возможные случаи:

1 орел - 8 решек
2 орла - 7 решек
3 орла - 6 решек
4 орла - 5 решек
5 орлов - 4 решки
6 орлов - 3 решки
7 орлов - 2 решки
8 орлов - 1 решка
9 орлов - 0 решек

Теперь посчитаем количество комбинаций для каждого случая. Для этого воспользуемся формулой сочетаний: C(n, k) = n! / (k!(n-k)!), где n - общее количество бросков (в нашем случае 9), k - количество орлов.

1 орел - C(9, 1) = 9! / (1!(9-1)!) = 9
2 орла - C(9, 2) = 9! / (2!(9-2)!) = 36
3 орла - C(9, 3) = 9! / (3!(9-3)!) = 84
4 орла - C(9, 4) = 9! / (4!(9-4)!) = 126
5 орлов - C(9, 5) = 9! / (5!(9-5)!) = 126
6 орлов - C(9, 6) = 9! / (6!(9-6)!) = 84
7 орлов - C(9, 7) = 9! / (7!(9-7)!) = 36
8 орлов - C(9, 8) = 9! / (8!(9-8)!) = 9
9 орлов - C(9, 9) = 9! / (9!(9-9)!) = 1

Теперь сложим все полученные значения:

9 + 36 + 84 + 126 + 126 + 84 + 36 + 9 + 1 = 511

Всего возможно 2^9 = 512 комбинаций бросков монеты (поскольку в каждом броске есть 2 возможных исхода - орел или решка, и всего 9 бросков).

Таким образом, вероятность события "количество выпавших орлов кратно числу 3" равна 511/512.

б) Для того чтобы количество выпавших орлов не делилось на 4, нужно посчитать сколько существует комбинаций бросков монеты, в которых число орлов не делится на 4.

Аналогично предыдущему пункту, посчитаем количество комбинаций для каждого случая:

0 орлов - C(9, 0) = 1
1 орел - C(9, 1) = 9
2 орла - C(9, 2) = 36
3 орла - C(9, 3) = 84
4 орла - C(9, 4) = 126
5 орлов - C(9, 5) = 126
6 орлов - C(9, 6) = 84
7 орлов - C(9, 7) = 36
8 орлов - C(9, 8) = 9
9 орлов - C(9, 9) = 1

Теперь сложим значения для случаев, в которых число орлов не делится на 4, то есть для случаев: 0, 1, 2, 3, 5, 6, 7, 9.

1 + 9 + 36 + 84 + 126 + 126 + 84 + 36 + 1 = 503

Таким образом, вероятность события "количество выпавших орлов не делится на 4" равна 503/512.
4,8(47 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ