М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NekoChan625
NekoChan625
10.03.2021 11:16 •  Математика

1. найдите значение выражения : 56,7 + (-12,5 + 9) - (27,5 - 13,3) 2. выражение: а) 8 + 7k - 3k + k - 11k б) 4(c - 1) - 7(c+5) - 2(3c + 8) 3. решите уравнение: 0,9(b - 5) - 0,8(b - 2) = 2,3 4. найдите значение выражения: 43,2 - (25,3 - 6,8) + (-14,7 + 7) 5. выражение: а) 3n - 8n - 5n + 2 + 2n б) -3(a - 2) + 6(a - 4) - 4(3a + 2) 6. решите уравнение: 0,4(a - 4) - 0,3(a - 3) = 1,7 !

👇
Ответ:

)56.7-12.5+9-27.5+13.3=39

2а)8-6к

б)4с-4-7с-35-6с-16=-9с+23

30.9б-4.5-0.8б+1.6=2.3

30.1б=5.2

б=0.1727575(можно дробью написать)

 

4,8(53 оценок)
Открыть все ответы
Ответ:
lloginova58
lloginova58
10.03.2021
Средне-геометрическим двух неотрицательны чисел   p \   и   q \
называют величину   G = \sqrt{ p \cdot q } \ .

Если это выражение возвести в квадрат и слева и справа,
то мы получим, что:   G^2 = ( \sqrt{ p \cdot q } )^2 \

или просто:   p \cdot q = G^2 \ ;

Тогда условие задачи, можно переформулировать так: «произведение двух самых маленьких чисел равно   4^2 = 16 \ ,   а произведение двух самых больших равно   15^2 = 225 \ .   »

Произведение 16 можно составить из разных натруральных чисел
только двумя

I.     16 = 1 \cdot 16 \ ;

II.     16 = 2 \cdot 8 \ ;

Поскольку это должны быть минимальные числа,
то остальные числа могут быть только больше.

I*   В первом случае остальные числа могут быть только больше    16 \ ,    т.е.:    \{ 17, 18, 19, 20, 21 ... \} \ ;

Но произведение даже 17 \cdot 18 = 306 225 \ ;

И произведение любых двух чисел, больших, чем    16    каждое – будет, очевидно, больше чем    16 \cdot 16 = 256 \ ,    т.е. больше    225 \ ,     а значит, при выборе минимальных чисел в виде     1    и     16    – подобрать остальные числа невозможно.

II*   Во втором случае остальные числа могут быть только больше    8 \ ,    т.е.:    \{ 9, 10, 11, 12, 13 ... \} \ ;

Рассмотрим разложение на множители числа     225 = 15^2 = 3^2 5^2 \ ;

225 = 1 \cdot 225 = 3 \cdot 75 = 5 \cdot 45 = 9 \cdot 25 = 15 \cdot 15 \ ;

На подойдут только числа, большие восьми и не равные друг другу,
т.е.    9    и    25 \ .

Таким образом Вася выбрал числа 2, 8, 9    и    25 \ .

В диапазон между     2    и    8     Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы    16 \ .

Между     8    и    9     никаких натуральных чисел нет.

В диапазон между     9    и    25     Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы    225 \ .

Сумма всех Васиных чисел:     2 + 8 + 9 + 25 = 44 \ ;

О т в е т : 44 \ .
4,8(4 оценок)
Ответ:
Danil3250
Danil3250
10.03.2021
Задачу можно решить методом «научного тыка»

Допустим, в какой-то момент малыш Федя обгоняет Женю. Отметим это место специальной меткой, как условное начало круга. Как только он обгоняет Женю, он понимает, что (теперь уже) она – впереди него на расстоянии длины круговой дорожки (фактически она почти впритык позади него, но ведь дорожка круговая (!), а значит, Женя, как бы и впереди на расстоянии длины дорожки).

Пускай Женя пройдёт после первой встречи целый круг. Для того, чтобы Феде догнать Женю, ему нужно проехать всю круговую дорожку до того места, где в раз была Женя (т.е. целый круг) и ещё один круг, чтобы уже и догнать Женю второй раз. Но для этого ему нужно было бы ехать вдвое быстрее, т.е. на 100% быстрее, а он едет только на 75% быстрее. Значит, до второй встречи Женя успеет пройти больше, чем один круг.

Итак, учитывая это, пускай теперь до нового места встречи Женя пройдёт целый круг от метки до метки, и ещё дополнительно от метки какую-то часть круговой дорожки, назовём это «кусок дорожки», а малыш Федя до этого нового места встречи проедет на велосипеде целых два круга и ещё такую же часть дорожки, как и Женя, т.е. такой же «кусок».

Новое место встречи, таким образом, сместилось от начальной метки на «кусок дорожки».

После второй встречи, Федя опять обгонит Женю и потом опять встретится с ней уже в третий раз со смещением ещё на один «кусок дорожки» от предыдущего места встречи, которое и так уже было смещено от начальной метки на «кусок дорожки», стало быть, третья встреча сместится от начальной метки на «два куска дорожки».

До второго места встречи Женя
круг и ещё «кусок дорожки»,
а Федя проехал два круга и «кусок дорожки».

До третьего места встречи Женя
2 круга и ещё «два куска дорожки»,
а Федя проехал четыре круга и ещё «два куска дорожки».

До четвёртого места встречи Женя
3 круга и ещё «три куска дорожки»,
а Федя проехал шесть кругов и ещё «три куска дорожки».

Заметим, что если бы Женя к четвёртому месту встречи, смещённому от начальной метки на «три куска дорожки бы 4 целые круга (три плюс один), то тогда Федя проехал бы 6 кругов и ещё «три куска дорожки», т.е. такое же расстояние, как и Женя, а значит ещё один добавочный круг, и всего – семь кругов.

И это как раз и сходится с их соотношением скорости. 7 кругов ведь на 75% больше, чем 4 круга. Всё правильно, Федя ведь ездит на 75% быстрее, а значит, он и должен проехать не 4 круга, как Женя, а 7 кругов!

Значит, наше предположение верно. К четвёртой встрече Женя проходит четыре полных круга, а стало быть, она приходит к начальной метке, которую мы отметили в месте первой встречи, т.е. место четвёртой встречи совпадает с местом первой встречи. Дальнейшие встречи станут совпадать со встречами в первом цикле рассуждений. Таким образом, всего существует 3 разных места, где Федя обгоняет Женю.

Так же, эту задачу можно решить и «аналитически», через введение неизвестного параметра скорости, и рассмотрения относительной скорости участников, т.е. скорости сближения.

Пусть скорость Жени равна   v .   Тогда скорость Феди равна   1.75v .   Когда Федя догоняет Женю, их скорость сближения равна   1.75v - v = 0.75v   (вычитаем, поскольку Женя уходит от догоняющего её Феди, тем самым, как бы мешая ему себя догонять). Иначе можно сказать, что скорость Жени в   \frac{4}{3}   раза больше, чем скорость сближения, поскольку   v : 0.75 v = 1 : \frac{3}{4} = \frac{4}{3} .

Когда Федя в очередной раз обгоняет Женю, его удалённость от Жени, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Жени, Женя пройдет по круговой дорожке в   \frac{4}{3}   раза большее расстояние, поскольку её скорость в   \frac{4}{3} = 1 \frac{1}{3}   раза больше скорости сближения.

Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Женя проходит круг и ещё треть круговой дорожки. Значит за 3 дополнительные встречи (после первой начальной) она и пройдёт полный круг, вернувшись к начальной метке. Т.е. всего существует 3 места, в которых малыш Федя обгоняет пешую Женю.

О т в е т : (б) в 3 точках.

По круговой дорожке в одном направлении двигаются женя пешком и малыш федя на велосипеде. скорость ф
4,7(22 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ